Visibility of Kobayashi geodesics in convex domains and related properties
نویسندگان
چکیده
Let $$D\subset {\mathbb {C}}^n$$ be a bounded domain. A pair of distinct boundary points $$\{p,q\}$$ D has the visibility property provided there exist compact subset $$K_{p,q}\subset D$$ and open neighborhoods $$U_p$$ p $$U_q$$ q, such that real geodesics for Kobayashi metric which join in intersect $$K_{p,q}$$ . Every Gromov hyperbolic convex domain enjoys any couple points. The Goldilocks domains introduced by Bharali Zimmer log-type Liu Wang also enjoy property. In this paper we relate growth distance near with provide new families where holds. We use same methods to refinements localization results distance, give localized sufficient condition visibility. exploit study behavior biholomorphic maps.
منابع مشابه
Quasihyperbolic geodesics in convex domains
We show that quasihyperbolic geodesics exist in convex domains in reflexive Banach spaces and that quasihyperbolic geodesics are quasiconvex in the norm metric in convex domains in all normed spaces. 2000 Mathematics Subject Classification: 30C65
متن کاملComplex Geodesics on Convex Domains
Existence and uniqueness of complex geodesics joining two points of a convex bounded domain in a Banach space X are considered. Existence is proved for the unit ball of X under the assumption that X is 1-complemented in its double dual. Another existence result for taut domains is also proved. Uniqueness is proved for strictly convex bounded domains in spaces with the analytic Radon-Nikodym pro...
متن کاملstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولDomains Which Are Locally Uniformly Linearly Convex in the Kobayashi Distance
Recently, in [1], it has been proved that if B is an open unit ball in a Cartesian product l2 × l2 furnished with the lp-norm ‖ · ‖ and kB is the Kobayashi distance on B, then the metric space (B,kB) is locally uniformly convex in linear sense. Our construction of domains, which are locally uniformly convex in their Kobayashi distances, is based on the ideas from [1]. Such domains play an impor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2022
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-022-02978-w